ภาคผนวก 5

รายละเอียดและเงื่อนไขการสาธิต

Live Demonstration

- 1. ผู้ยื่นข้อเสนอจะต้องเข้าดำเนินการสาธิตการทำงานของฟังก์ชัน FLISR (Live Demonstration) โดยอุปกรณ์ ทั้งฮาร์ดแวร์และซอฟต์แวร์ที่นำมาสาธิตดังกล่าว ต้องเป็นผลิตภัณฑ์และรุ่นเดียวกันกับที่เสนอในประกวดราคานี้ โดยระหว่างการสาธิตให้ใช้การจำลอง (Simulation) ค่าสถานะอุปกรณ์ (Status) และค่าวัดต่างๆ (Analog) จาก Software ของระบบหรือ Software อื่นๆ ได้
- 2. ผู้ยื่นข้อเสนอจะต้องทำการสาธิตการทำงานครบถ้วนทุกหัวข้อตามที่การไฟฟ้าส่วนภูมิภาค (กฟภ.) กำหนด ให้คณะกรรมการพิจารณาหรือผู้แทน ตรวจสอบ โดยต้องสามารถทำงานได้ ดังนี้
 - 2.1 ต้องสามารถระบุขอบเขตพื้นที่การเกิดไฟฟ้าขัดข้องได้
 - 2.2 ต้องสามารถสร้าง Switching Sequence เพื่อแยกระบบที่ไม่เกี่ยวข้องออกจากส่วนที่เกิดไฟฟ้าขัดข้องได้
 - 2.3 ต้องสามารถสร้าง Switching Sequence เพื่อจ่ายไฟคืนระบบในส่วนอื่นๆ ที่ไม่เกี่ยวข้องได้
- 2.4 ต้องสามารถสร้าง Switching Sequence เพื่อคืนสภาพระบบไฟฟ้าให้กลับเป็นปกติได้ (สภาพระบบ ไฟฟ้าก่อนการเกิดกระแสไฟฟ้าขัดข้อง)
- 3. ลำดับในการสาธิต และเงื่อนไข มีรายละเอียดดังนี้
- 3.1 กฟภ. จะพิจารณาด้วยการจับสลากเพื่อเรียงลำดับในการสาธิต และแจ้งวันเข้าทำการสาธิตให้ผู้ยื่น ข้อเสนอทราบวันนัดหมาย โดยจะแจ้งให้ทราบภายใน 5 วันทำการ นับถัดจากวันเสนอราคา ทั้งนี้การกำหนดวัน สาธิตจะแจ้งให้ทราบล่วงหน้าอย่างน้อย 3 วันทำการ ก่อนวันสาธิต
- 3.2 ผู้ยื่นข้อเสนอจะต้องนำอุปกรณ์ที่จะใช้ในการสาธิต มาแสดงให้ กฟภ. ตรวจสอบเบื้องต้น ภายใน 1 วันทำการ นับถัดจากวันเสนอราคา (วันเดียวกับที่นำหลักฐานการยื่นข้อเสนอจัดส่งให้ กฟภ.) โดยอย่างน้อยต้องมีรายการ อุปกรณ์ ดังนี้
 - (1) Microgrid Controller พร้อมซอฟต์แวร์
- (2) ฮาร์ดแวร์และซอฟต์แวร์สำหรับ FLISR function (หากระบบที่เสนอไม่ใช้ Microgrid Controller ในการประมวลผลฟังก์ชัน FLISR โดยฮาร์ดแวร์ดังกล่าวสามารถใช้ยี่ห้อและรุ่นใดในการสาธิตก็ได้)
- (3) Logic Diagram แสดงชั้นตอนการทำงานของฟังก์ชัน FLISR ตั้งแต่เริ่มต้นจนถึงขั้นตอนสุดท้าย ของฟังก์ชัน
- 3.3 ผู้ยื่นข้อเสนอมีระยะเวลาสำหรับการสาธิต 3 วัน ประกอบด้วย วันเตรียมการ 1 วัน (ตั้งแต่เวลา 8.30-16.30 น.) และวันสาธิต 2 วัน (ตั้งแต่เวลา 8.30-16.30 น.)
 - 3.4 ผู้ยื่นข้อเสนอจะต้องสาธิต**ให้ผ่านครบถ้วนทุกหัวข้อ**ตามรายละเอียดและเงื่อนไขการสาธิตภาคผนวก 5
- 3.5 ผู้ยื่นข้อเสนอรายใดท<u>ี่ไม่มาทำการสาธิต</u>ในช่วงเวลาที่กำหนด หรือ <u>ไม่สามารถสาธิตให้ผ่านครบทุกหัวข้อ</u> ตามที่ กฟภ. กำหนด กฟภ. จะถือว่า<u>ไม่ผ่านคุณสมบัติข้อเสนอทางเทคนิค</u>

3.6 ผู้ยื่นข้อเสนอจะต้องจัดเตรียมอุปกรณ์ต่างๆ ที่ใช้ประกอบการสาธิตในครั้งนี้ให้ครบถ้วน โดย กฟภ. จะจัดส่ง เจ้าหน้าที่เข้าร่วมสังเกตการณ์ตลอดระยะเวลาการเตรียมการและการสาธิต

3.7 ในการสาธิตครั้งนี้ กฟภ. ไม่มีความผูกพันที่จะรับคำเสนอราคาหรือใบเสนอราคาใดๆ รวมทั้งไม่ต้อง รับผิดชอบค่าใช้จ่ายและค่าเสียหายใดๆ ของผู้ยื่นข้อเสนอ อันอาจเกิดขึ้นในการที่ผู้ยื่นข้อเสนอได้เข้าเสนอราคาครั้งนี้ และหากเกิดความเสียหายใดๆ ในระหว่างการสาธิตผู้ยื่นข้อเสนอต้องรับผิดชอบค่าเสียหายทั้งหมด

Contents

1. Init	ial Condition & Diagram	4
1.1	Initial Condition	4
1.2	Distribution system demonstration diagram	4
2. Live	e Demonstration Item	6
2.1	The results are presented by the system	6
2.2	Case I: Fault simulation with low load demand	7
2.3	Case II: Fault simulation high load demand	8
FLISR Fu	unction Live Demonstration Result Case I and II	9
(1)	Equipment Check List	10
(2)	Demonstration Result Case I	11
(3)	Demonstration Result Case II	12

1. Initial Condition & Diagram

1.1 Initial Condition

Normal status and load level of each device shall be as below table.

(1) Status

Status Points	SW1	SW2	SW3	1VB	2VB	0BVB
Close/Open Status	Close	Close	Open	Close	Close	Open
Control Mode	Remote	Remote	Remote	Remote	Remote	Remote
Withdraw Unit Status	-	-	-	In-Service	In-Service	In-Service
Auto Reclose Status	On	On	-	On	On	-
Equipment Type	Recloser	Recloser	RCS	СВ	СВ	СВ

(2) Full Load Capacity

- Maximum capacity of incoming 1 and 2 is 10 MW
- Maximum capacity of each feeder is 10MW.

1.2 Distribution system demonstration diagram

Test topology based on 33kV distribution system with double bus and tie circuit breaker, supplied by 2 power sources with 10 MW rated transformers. Each bus has 1 feeder with 10 MW maximum capacity. Feeder#1 was energized by 1VB with 2 reclose (SW1, SW2) with tie switch (SW3) tied to feeder#2 energize by 2VB. The expected graphic for network topology is illustrated as in Figure 1.

Figure 1 Distribution Topology

2. Live Demonstration Item

2.1 The results are presented by the system

Bidder shall provide 2 of the monitors at least "23 each to display graphical and alphanumerical list.

- 2.1.1 Graphically with the following standard representation:
 - (1) Faulty: Fault color
- (2) Healthy, connected to the fault location: two colored line, fault color and de-energized color
 - (3) Healthy, not connected to the fault location: De-energized color
 - (4) Unaffected network: Topological color.
- (5) Status of CB at least Close/Open status, Remote/Local status, Withdraw Unit Status in/out service and Auto Reclose on/off status.
 - (6) Status of SW at least Close/Open status and Remote/Local status.

2.1.2 Alphanumerical list

- (1) Event log (The event lists shall demonstrate sequence of events according to First in First out (FIFO) process.) This following sequence shall be checked during Live Demonstration.
- FLISR function operation sequence shall be followed bidder's logic diagram.

2.2 Case I: Fault simulation with low load demand

In case I, the fault location is considered between SW1 and SW2 as referred to Figure 2 after that SW1 will be tripped and lockout. During demonstration, load capacity of feeder 1 is 10 MW (full capacity), and the load capacity of feeder 2 is 2 MW (full capacity is 10 MW.) which has enough capacity to support the load section of SW2.

Figure 2 Case I: Fault between SW1 and SW2

2.3 Case II: Fault simulation high load demand

In case II, the fault location is considered between SW1 and SW2 as referred to Figure 3 after that SW1 will be tripped and lockout. During demonstration, load capacity of feeder 1 is 10 MW (full capacity) with the load capacity of SW2 is 5MW, and the load capacity of feeder 2 is 8 MW. (full capacity is 10 MW.) The remaining capacity of feeder 2 is 2 MW.

Figure 3: Case II-Fault between SW1 and SW2

FLISR Function Live Demonstration Result

Case I and II

(1) Equipment Check List

This below table refer to 3.2 bidder shall present set equipment that will be used during the Live Demonstration

No	Purposed Product	QTY	Unit	Serial Number	Model	Software/Document Version	Remark
1	Microgrid Controller Hardware & Software					90	
2	FLISR Hardware & Software					8	
3	Logic Diagram						

Note:

To achieve the objective of Live Demonstration, bidder may add more equipment if needed.

Submitted by	
(.)
Witness by	(
(

(2) Demonstration Result Case I

Item	Functional	Expected Result		Remark
1.	Documentation	Logic diagram and initial condition of FLISR function	O Pass	
		shall be submitted. The operation of the function	O Fail	
		shall follow this document.		
2.	Fault location detection	The system shall be able to indicate fault location	O Pass	
		correctly.	O Fail	
3.	Switching sequences generation	The system shall be able to generate switching	O Pass	
	for Fault isolation	sequence in order to isolate fault area.	O Fail	
4.	Switching sequences generation	The system shall be able to generate switching	O Pass	
	for Upstream restoration	sequence in order to restore upstream supply.	O Fail	
5.	Switching sequences generation	The system shall be able to generate switching	O Pass	
	for Downstream restoration	sequence in order to restore downstream supply.	O Fail	
6.	Returning to normal state	The execution stage shall suggest operator to operate	O Pass	
	before fault occurred	the switching sequence after completed in repairing	O Fail	
		fault area. All of the deployed equipment status shall		
		be taken into account as an interlocking condition.		

Note:

- (1) For item 2-6, the results shall follow the document in item 1.
- (2) To achieve the objective of Live Demonstration, bidder may add more equipment if needed.
- (3) For item 1 Microgrid Controller shall be the same product as in the paper proposals.

(3) Demonstration Result Case II

Item	Functional	Expected Result	Demo. Result	Remark
1.	Documentation	Logic diagram and initial condition of FLISR function	O Pass	
		shall be submitted. The operation of the function	O Fail	
		shall follow this document.		
2.	Fault location detection	The system shall be able to indicate fault location	O Pass	
		correctly.	O Fail	
3.	Switching sequences	The system shall be able to generate switching	O Pass	
	generation for Fault isolation	sequence in order to isolate fault area.	O Fail)
4.	Switching sequences	The system shall be able to generate switching	O Pass	
	generation for Upstream	sequence in order to restore upstream supply.	O Fail	
	restoration	, ()		
5.	Switching sequences	The system shall not be able to generate switching	O Pass	
	generation for Downstream	sequence in order to restore downstream supply	O Fail	
	restoration	because of feeder capacity.		
6.	Returning to normal state	The execution stage shall suggest operator to	O Pass	The alarm message with troubleshooting
	before fault occurred	operate the switching sequence after completed in	O Fail	shall be generated if any conditions for
		repairing fault area. All of the deployed equipment		returning to normal state do not meet
		status shall be taken into account as an interlocking		the basis of PEA's requirements.
		condition.		

Note:

- (1) For item 2-6, the results shall follow the document in item 1.
- (2) To achieve the objective of Live Demonstration, bidder may add more equipment if needed.
- (3) For item 1 Microgrid Controller shall be the same product as in the paper proposals.